Юридический портал - Ipoteka112

Механика - Механика - Темы по физике - Каталог лекций - Физика — простым языком. Основы механики для чайников

- (греч. mechanike, от mechane машина). Часть прикладной математики, наука о силе и сопротивлении в машинах; искусство применять силу к делу и строить машины. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. МЕХАНИКА… … Словарь иностранных слов русского языка

МЕХАНИКА - (от греч. mechanike (techne) наука о машинах, искусство построения машин), наука о механич. движении матер. тел и происходящих при этом вз ствиях между ними. Под механич. движением понимают изменение с течением времени взаимного положения тел или … Физическая энциклопедия

МЕХАНИКА - (от греч. mechane машина), наука о движении. До 17 века познания в этой области почти ограничивались эмпирическими наблюдениями, часто ошибочными. В 17 веке свойства движения впервые стали выводиться из немногих основных принципов математически.… … Большая медицинская энциклопедия

МЕХАНИКА - МЕХАНИКА, механики, мн. нет, жен. (греч. mechanike). 1. Отдел физики учение о движении и силах. Теоретическая и прикладная механика. 2. Скрытое, сложное устройство, подоплека, сущность чего нибудь (разг.). Хитрая механика. «Он, как говорят его… … Толковый словарь Ушакова

МЕХАНИКА - МЕХАНИКА, раздел физики, изучающий свойства тел (ВЕЩЕСТВ) под действием приложенных к ним сил. Делится на механику твердых и механику жидких тел. Другой раздел, статика, изучает свойства тел в состоянии покоя, а ДИНАМИКА движение тел. В статике… … Научно-технический энциклопедический словарь

механика - Наука о механическом движении и механическом взаимодействии материальных тел. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет научно технической терминологии. 1984 г.] Тематики теоретическая… … Справочник технического переводчика

МЕХАНИКА Современная энциклопедия

МЕХАНИКА - (от греч. mechanike искусство построения машин) наука о механическом движении материальных тел (т. е. изменении с течением времени взаимного положения тел или их частей в пространстве) и взаимодействиях между ними. В основе классической механики… … Большой Энциклопедический словарь

МЕХАНИКА - МЕХАНИКА, и, жен. 1. Наука о движении в пространстве и о силах, вызывающих это движение. Теоретическая м. 2. Отрасль техники, занимающаяся вопросами применения учения о движении и силах к решению практических задач. Строительная м. Прикладная м.… … Толковый словарь Ожегова

Механика - наука о движении. Изучая движение, механика необходимодолжна изучать и причины, производящие и изменяющие движения, называемыесилами; силы же могут и уравновешивать друг друга, и равновесие можетбыть рассматриваемо как частный случай движения.… … Энциклопедия Брокгауза и Ефрона

Механика - [от греческого mechanike (techne) искусство построения машин], раздел физики, изучающий механическое движение твердых, жидких и газообразных материальных тел и взаимодействия между ними. В так называемой классической механике (или просто… … Иллюстрированный энциклопедический словарь

Книги

  • Механика , В. А. Алешкевич , Л. Г. Деденко , В. А. Караваев , Учебник представляет собой первую часть серии "Университетский курс общей физики", предназначенную для студентов физических специальностей вузов. 0 тличительная его особенность -… Категория: Механика Серия: Университетский курс общей физики Издатель: ФИЗМАТЛИТ , Купить за 1181 руб
  • Механика , Карл Пихоль , В повседневной жизни нас окружает не только огромное количество машин, но и многочисленные сооружения, такие как дороги, здания и мосты. Для того чтобы конструировать все это, необходимо… Категория:

Формулы механики. Механика делится на три раздела: кинематику, динамику и статику. В разделе кинематика рассматриваются такие кинематические характеристики движения, как перемещение, скорость, ускорение. Здесь необходимо использовать аппарат дифференциального и интегрального исчисления.

В основе классической динамики лежат три закона Ньютона. Здесь необходимо обратить внимание на векторный характер действующих на тела сил, входящих в эти законы.

Динамика охватывает такие вопросы, как закон сохранения импульса, закон сохранения полной механической энергии, работа силы.

При изучении кинематики и динамики вращательного движения следует обратить внимание на связь между угловыми и линейными характеристиками. Здесь вводятся понятия момента силы, момента инерции, момента импульса и рассматривается закон сохранения момента импульса.

Таблица основных формул по механике

Модуль вектора скорости:

где s - расстояние вдоль траектории движения (путь)

Скорость средняя (модуль):

Ускорение мгновенное:

Модуль вектора ускорения при прямолинейном движении:

Ускорение при криволинейном движении:

1) нормальное

где R - радиус кривизны траектории,

2) тангенциальное

3) полное (вектор)

4) (модуль)

Скорость и путь при движении:

1) равномерном

2) равнопеременном

V 0 - начальная скорость;

а > 0 при равноускоренном движении;

а < 0 при равнозамедленном движении.

Угловая скорость:

где φ - угловое перемещение.

Угловое ускорение:

Связь между линейными и угловыми величинами:

Импульс материальной точки:

где m - масса материальной точки.

Основное уравнение динамики поступательного движения (II закон Ньютона):

где F - результирующая сила, <>

Формулы сил:

трения Fтр

где μ - коэффициент трения,

N - сила нормального давления,

упругости Fупр

где k - коэффициент упругости (жесткости),

Δх - деформация (изменение длины тела).

Закон сохранения импульса для замкнутой системы , состоящей из двух тел:

где - скорости тел до взаимодействия;

Скорости тел после взаимодействия.

Потенциальная энергия тела:

1) поднятого над Землей на высоту h

2) упругодеформированного

Кинетическая энергия поступательного движения:

Работа постоянной силы:

где α - угол между направлением силы и направлением перемещения.

Полная механическая энергия:

Закон сохранения энергии:

силы консервативны

силы неконсервативны

где W 1 - энергия системы тел в начальном состоянии;

W 2 - энергия системы тел в конечном состоянии.

Момент инерции тел массой m относительно оси, проходящей через центр инерции (центр масс):

1) тонкостенного цилиндра (обруча)

где R - радиус,

2) сплошного цилиндра (диска)

4) стержня длиной l, если ось вращения перпендикулярна стержню и проходит через его середину

Момент инерции тела относительно произвольной оси (теорема Штейнера):

где - момент инерции тела относительно оси, проходящей через центр масс, d - расстояние между осями.

Момент силы(модуль):

где l - плечо силы.

Основное уравнение динамики вращательного движения:

где - угловое ускорение,

Результирующий момент сил.

Момент импульса:

1) материальной точки относительно неподвижной точки

где r - плечо импульса,

2) твердого тела относительно неподвижной оси вращения

Закон сохранения момента импульса:

где L 1 - момент импульса системы в начальном состоянии,

L 2 - момент импульса системы в конечном состоянии.

Кинетическая энергия вращательного движения:

Работа при вращательном движении

где Δφ - изменение угла поворота.

Кинематика

Второй закон Ньютона

Второй закон Ньютона : в инерциальных системах отсчета ускорение материальной точки прямо пропорционально векторной сумме сил, действующих на материальную точку, и обратно пропорционально её массе.

Третий закон Ньютона

Третий закон Ньютона : в инерциальных системах отсчета всякое действие одной (первой) материальной точки на другую (вторую), сопровождается воздействием второй материальной точки на первую, т.е имеет характер взаимодействия; силы, с которыми взаимодействуют материальные точки, всегда равны по модулю, противоположно направлены, действуют вдоль прямой, соединяющей эти точки, являются силами одной природы и приложены к разным материальным точкам.

Принцип относительности Галилея

Принцип относительности Галилея : никакими механическими опытами, проводимыми внутри данной инерциальной системы, нельзя установить, покоится эта система или находится в равномерном и прямолинейном движении. Во всех инерциальных системах отсчета законы механики одинаковы.

  • Вес тела - сила, с которой тело давит на опору.

Закон Гука

Закон Гука : при достаточно малых деформациях сила упругости пропорциональна величине деформации тела и направлена в сторону, противоположную деформации.

Импульс

  • Импульс тела (материальной точки) - векторная величина, равная произведению массы тела (материальной точки) на её скорость.
  • Импульс системы тел (материальных точек) - векторная сумма импульсов всех точек.
  • Импульс силы - произведение силы на время её действия (или интеграл по времени, если сила изменяется со временем).
  • Закон сохранения импульса : в инерциальной системе отсчета импульс замкнутой системы сохраняется.
  • Изменение импульса системы материальных точек - в инерциальной системе отсчета скорость изменения импульса механической системы равна векторной сумме внешних сил, действующих на материальные точки системы.

Центр масс

Центр масс - воображаемая точка С, положение которой характеризует распределение масс этой системы.

  • Закон движения центра масс - в инерциальных системах отсчёта центр масс системы движется как материальная точка, в которой находится масса всей системы и на которую действует сила, равная геометрической сумме всех внешних сил, действующих на систему.

; ;

  • Система центра масс - система отсчёта, поступательно перемещающаяся в некоторой инерциальной системе, относительно которой центр масс механической системы неподвижен.

Работа, мощность, энергия

  • Работа силы равна произведению модуля силы на перемещение и на косинус угла между ними.
  • Мощность - отношение работы ко времени, за которое эта работа была совершена.
  • Кинетическая энергия - величина, равная половине произведения массы тела на квадрат его скорости.
  • Величину, равную произведению масы тела на на высоту тела над поверхностью Земли, называют потенциальной энергией тела в поле силы тяжести.
  • Консервативные силы - силы, работа которых не зависит от пути, пройденного материальной точкой. Зависит только от перемещения.
  • Механическая энергия системы - величина, равная сумме кинетической и потенциальной энергий системы.
  • В замкнутой системе, в которой действуют только консервативные силы, механическая энергия сохраняется.
  • Вторая космическая скорость - скорость, необходимая материальной точке, чтобы покинуть поле тяготения Земли и стать спутником Солнца.

Wikimedia Foundation . 2010 .

Большая советская энциклопедия - Общие сведения При рассмотрении вопроса о влиянии конструкции танка на его основные боевые свойства, в первую очередь следует определиться: какими он обладает боевыми свойствами и что они из себя представляют. Основными боевыми… … Энциклопедия техники

Крабовидная туманность Астрономия наука о Вселенной, изучающая расположение, движение, строение, происхождение и … Википедия

Множество, на к ром определена операция, наз. умножением и удовлетворяющая спец. условиям (групповым аксиомам): в Г. существует единичный элемент; для каждого элемента Г. существует обратный; операция умножения ассоциативна. Понятие Г. возникло… … Физическая энциклопедия

Запрос «Менделеев» перенаправляется сюда; см. также другие значения. Дмитрий Иванович Менделеев Д. И. Менделе … Википедия

Механика является одним из разделов физики . Под механикой обычно понимают классическую механику. Механика - наука, изучающая движение тел и происходящие при этом взаимодействия между ними.

В частности, каждое тело в любой момент времени занимает определенное положение в пространстве относительно других тел. Если со временем тело меняет положение в пространстве, то говорят, что тело движется, совершает механическое движение .

Механическим движением называется изменение взаимного положения тел в пространстве с течением времени.

Основная задача механики - определение положения тела в любой момент времени. Для этого нужно уметь кратко и точно указать, как движется тело, как при том или ином движении изменяется его положение с течением времени. Другими словами - найти математическое описание движения, т. е. установить сязи между величинами, характеризую-щими механическое движение.

При изучении движения материальных тел используют такие понятия, как:

  • материальная точка - тело, размерами которого в данных условиях движения можно пренебречь. Это понятие используется при поступательном движении, или когда в изучаемом движении можно пренебречь вращением тела вокруг его центра масс,
  • абсолютно твердое тело - тело, расстояние между двумя любыми точками которого не меняется. Понятие применяется, когда можно пренебречь деформацией тела.
  • сплошная изменимая среда - понятие применимо, когда можно пренебречь молекулярной структурой тела. Используется при изучении движения жидкостей, газов, деформируемых твердых тел.

Классическая механика основана на принципе относительности Галилея и законах Ньютона. Поэтому, ее еще называют - механикой Ньютона .

Механика изучает движение материальных тел, взаимодействия между материальными телами, общие законы изменения положений тел со временем, а также причины вызывающие эти изменения.

Общие законы механики подразумевают, что они справедливы при изучении движения и взаимодействия любых материальных тел (кроме элементарных частиц) от микроскопических размеров до объектов астрономических.

Механика включает в себя следующие разделы:

  • кинематика (изучает геометрическое свойство движения тел без причин, вызвавших это движение),
  • динамика (изучает движение тел с учетом причин вызвавших это движение),
  • статика (изучает равновесие тел под действием сил).

Следует отметить, что это не все разделы, которые входят в механику, но это основные разделы, которые изучает школьная программа. Кроме разделов указанных выше существует еще ряд разделов как имеющих самостоятельное значение, так и тесно связанных между собой и с указанными разделами.

Например:

  • механика сплошных сред (включает в себя гидродинамику, аэродинамику, газовую динамику, теорию упругости, теорию пластичности);
  • квантовая механика;
  • механика машин и механизмов;
  • теория колебаний;
  • механика переменной масс;
  • теория удара;
  • и др.

Появление дополнительных разделов связано как с выходом за границы применимости классической механики (квантовая механика), так и с детальным изучением явлений происходящих при взаимодействии тел (например, теория упругости, теория удара).

Но, несмотря на это, классическая механика не теряет своего значения. Она является достаточной для описания в широком диапазоне наблюдаемых явлений без необходимости обращаться к специальным теориям. С другой стороны она проста для понимания и создает базу для других теорий.

В рамках любого учебного курса изучение физики начинается с механики. Не с теоретической, не с прикладной и не вычислительной, а со старой доброй классической механики. Эту механику еще называют механикой Ньютона. По легенде, ученый гулял по саду, увидел, как падает яблоко, и именно это явление подтолкнуло его к открытию закона всемирного тяготения. Конечно, закон существовал всегда, а Ньютон лишь придал ему понятную для людей форму, но его заслуга – бесценна. В данной статье мы не будем расписывать законы Ньютоновской механики максимально подробно, но изложим основы, базовые знания, определения и формулы, которые всегда могут сыграть Вам на руку.

Механика – раздел физики, наука, изучающая движение материальных тел и взаимодействия между ними.

Само слово имеет греческое происхождение и переводится как «искусство построения машин» . Но до построения машин нам еще как до Луны, поэтому пойдем по стопам наших предков, и будем изучать движение камней, брошенных под углом к горизонту, и яблок, падающих на головы с высоты h.


Почему изучение физики начинается именно с механики? Потому что это совершенно естественно, не с термодинамического же равновесия его начинать?!

Механика – одна из старейших наук, и исторически изучение физики началось именно с основ механики. Помещенные в рамки времени и пространства, люди, по сути, никак не могли начать с чего-то другого, при всем желании. Движущиеся тела – первое, на что мы обращаем свое внимание.

Что такое движение?

Механическое движение – это изменение положения тел в пространстве относительно друг друга с течением времени.

Именно после этого определения мы совершенно естественно приходим к понятию системы отсчета. Изменение положения тел в пространстве относительно друг друга. Ключевые слова здесь: относительно друг друга . Ведь пассажир в машине движется относительно стоящего на обочине человека с определенной скоростью, и покоится относительно своего соседа на сиденье рядом, и движется с какой-то другой скоростью относительно пассажира в машине, которая их обгоняет.


Именно поэтому, для того, чтобы нормально измерять параметры движущихся объектов и не запутаться, нам нужна система отсчета - жестко связанные между собой тело отсчета, система координат и часов. Например, земля движется вокруг солнца в гелиоцентрической системе отсчета. В быту практически все свои измерения мы проводим в геоцентрической системе отсчета, связанной с Землей. Земля – тело отсчета, относительно которого движутся машины, самолеты, люди, животные.


Механика, как наука, имеет свою задачу. Задача механики – в любой момент времени знать положение тела в пространстве. Иными словами, механика строит математическое описание движения и находит связи между физическими величинами, его характеризующими.

Для того, чтобы двигаться далее, нам понадобится понятие “материальная точка ”. Говорят, физика – точная наука, но физикам известно, сколько приближений и допущений приходится делать, чтобы согласовать эту самую точность. Никто никогда не видел материальной точки и не нюхал идеального газа, но они есть! С ними просто гораздо легче жить.

Материальная точка – тело, размерами и формой которого в контексте данной задачи можно пренебречь.

Разделы классической механики

Механика состоит из нескольких разделов

  • Кинематика
  • Динамика
  • Статика

Кинематика с физической точки зрения изучает, как именно тело движется. Другими словами, этот раздел занимается количественными характеристиками движения. Найти скорость, путь – типичные задачи кинематики

Динамика решает вопрос, почему оно движется именно так. То есть, рассматривает силы, действующие на тело.

Статика изучает равновесие тел под действием сил, то есть отвечает на вопрос: а почему оно вообще не падает?

Границы применимости классической механики.

Классическая механика уже не претендует на статус науки, объясняющей все (в начале прошлого века все было совершенно иначе), и имеет четкие рамки применимости. Вообще, законы классической механики справедливы привычном нам по размеру мире (макромир). Они перестают работать в случае мира частиц, когда на смену классической приходит квантовая механика. Также классическая механика неприменима к случаям, когда движение тел происходит со скоростью, близкой к скорости света. В таких случаях ярко выраженными становятся релятивистские эффекты. Грубо говоря, в рамках квантовой и релятивистской механики – классическая механика, это частный случай, когда размеры тела велики, а скорость – мала. Подробнее об вы можете узнать из нашей статьи.


Вообще говоря, квантовые и релятивистские эффекты никогда никуда не деваются, они имеют место быть и при обычном движении макроскопических тел со скоростью, много меньшей скорости света. Другое дело, что действие этих эффектов так мало, что не выходит за рамки самых точных измерений. Классическая механика, таким образом, никогда не потеряет своей фундаментальной важности.

Мы продолжим изучение физических основ механики в следующих статьях. Для лучшего понимания механики Вы всегда можете обратиться к , которые в индивидуальном порядке прольют свет на темное пятно самой сложной задачи.

Загрузка...